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Parametric & partial parametric

* Parametric approach: #(.) is known and smooth. It is fully described
by a finite set of parameters, to be estimated. Easy interpretation. For
example, a lincar model:

yi=x;"B+e;, i=1--,N

* Nonparametric approach: »(.) is smooth, flexible, but unknown. Let
the data determine the shape of »()). Difficult interpretation.

yi=mx)+e, i= 1, N

* Semi-parametric approach: #(.) have some parameters -to be
estimated-, but some parts are determined by the data.

yi=x;'B+m_ (z;)+¢€,;, i=1,---, N

Motivation

It provides a versatile method of exploring a general relationship
between variables, can be used to test for nonlinearity.
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It gives predictions of observations yet to be made without
reference to a fixed parametric model
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It provides a tool for finding spurious observations by studying the
influence of isolated points
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It constitutes a flexible method of substituting for missing values
or interpolating between adjacent X-values
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» The aim of a regression analysis is to produce a reasonable analysis
to the unknown response function m, where for n data points
(X;,Y,), the relationship can be modeled as

Yo =m(X)+o(X))e
Y, =m(X,)+¢, i=LA,n @
« Unlike parametric approach where the function m is fully described

by a finite set of parameters, nonparametric modeling accommodate
a very flexible form of the regression curve. #8583 W7 [ [ 3 20
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« A reasonable approximation to the regression curve m(x)
will be the mean of response variables near a point x. This
local averaging procedure can be defined as

n
M(x) =n"Y W, (x)Y, 2
i=1
Every smoothing method to be described is of the form (2).
Wy () = K, (x= X))/ £,(0 ®

where f,(x)=n">" K, (x-X,),and K,(u)=h"K(u/h) .
Kernel smoothing describes the shape of the weight function W,; (x) by
a density function K with a scale parameter that adjusts the size and the
form of the weights near x. The kernel K is a continuous, bounded and

symmetric real function which integrates to 1. .
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Kernel Smoothing#% i

» The Nadaraya-Watson estimator is defined by

a0 = 2o B0 = X @
LG X)
B77iR% dy (xh) = E[M, () -m)F, 24

n—o, h—0, nh—oo, HATH U FE5iL:

d,, (x,h) = (nh)2o%c, +h*d[m" (P /4 (5)
pugic)

o? =var(g;), ¢, :_[Kz(u)du, dy =.fu2K(u)du
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The amount of averaging is controlled by a smoothing
parameter. The choice of smoothing parameter is related
to the balances between bias and variance.

The Sample Value of x
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Y, =m(X,)+¢g, i=1LA,n @

m(x) = m(x,) +m'(xu)(x—x0)+%(x— Xo)? + L.+
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“The Epanechnikay keemel
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Figure 2. The Epanechnikov kernel
K (u) =0.75(1-u?) I (Ju| <=1).

Figure 3. The effective kernel weights for the food versus
net income data set. K, (x—-)/ fh(x) atx=1andx=2.5 for
h=0.1(label1), h=0.2(label2), h=0.3(label3)
with Epanechnikov kernel.
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Local Regression
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locally weighted scatterplot smoother
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Step 2: Weighting the data
* We then choose a weight function to give greatest weight ]
to observations that are closest to the focal X observation
- In practice, the tricube weight function is usually used
Let z,=(x-x,)/h, which is the scaled distance between the
predictor value for the jth observation and the focal x

L ——

RE 5 H
Wi(e) = (1=[=R)" for s <1
0 for |2 > 1 :

Here h, is the half-width of the window centred on x,

Notice that observations more than h (the half-window or
bandwidth of the local regression) away from the focal x
receive a weight of 0

#Step 2 plo!(range(TIME) ©(0,1), xlab="Time (in days)",
#Applying the Tricube Weight ',
#Tricube function
tricube <- function(z) {
ifelse (abs(z) < 1, (1 - (abs(2))"3)"3, 0)

he Tricube Weight")
diff, x0+which.diff), Ity=2)

iff, x0+which.diff, len=250)
ff), Ity=1, lwd=2)
points(x.n. tricube(( - x0)which.diff), cex=2)

#Bisquare weight

bisquare <- function(z) {
ifelse (abs(z) <1, (1 - (abs(2))"2)"2, 0)
¥
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Step 1: Defining the window width

o The first step is to define the window width n, that
encloses the closest neighbours to each data observation
(the window half-width is labelled i)

- For this example, we use m=16 (i.e., for each data
point we select the 16 nearest neighbours in terms of
their X-value)

» 16 was chosen to represent 60% of the data
» The researcher typically chooses the window width
by trial and error (more on this later)

- The graph on the following page shows the 16 closest
observations to X;,,,=88. Here we call X, our focal X
Although for this example I start at X 5, in the real case
we would start with the first observation and move
through the data, finding the 16 closest observations to
each case

#StepL

#Defining the window width

plmrnME LIBERAL, xlab="Time (in days)", ylab="_beral Support",
=1, main="efining the Window Width")

ot rder(TIME)

Lib=LIBERAL

time <- TIME[ord]

pre <- LIBERAL[ord]

%0 <-time{10]

A I

squares (using the tricube weights) is then applied to

the focal X observation, using only the nearest

neighbour observations to minimize the weighted

residual sum of squares

- Typically a local linear regression or a local quadratic

regression is used, but higher order polynomials are
also possible

Y; = A+ By (zi-a0)+ Balwi—zo) 4+ By(zi—x0) + E;

From this regression, we then calculate the fitted
value for the focal X value and plot it on the
scatterplot
- The regression line within the window in the
following graph shows the fitted value for the focal
x, from a local linear regression
#Step 3
#The local polynomial

Plot(TIME, LIBERAL, xlab="Time (in days)", ylab="Liberal Support",

type="n', main="Local Linear Regression")
abline(v=c(x0-which.diff, x0+which.diff), Ity=2)
abline(v=x0)
points(x.n, y.n, cex=2)
mod <- Im(y.n ~ x.n, weights=tricube((x.n-x0)which.diff))
reg.line(mod, Iwd=2, col=1)

points(x0, predict(mod, data.frame(x.n=x0)), pch=16, cex=1.8)

text(locator(1), *Fitted Value of Y at Focal X")
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Step 4: The Nonparametric Curve

The Lowess Fit

Liberal Support

Adjusting for outliers (1)

3.

.

Calculate resistance weights v, for each observation
using an appropriate weight function to determine the
relative size of each residual. Here we use the
Bisquare Weight Function:

v; = wy(z)
22
_ (=22 forlzi<1
0 for 2] > 1
E
where z = ————
i x MAD

and ¢ is a tuning constant

=6 MADs corresponds approximately to 4 standard
deviations. In other words, we exclude observations
that have a probability of being observed of less than
0.0001.

Adjusting for outliers (4)

The Robust Lowess Fit
In this case
the robust fit O S
is nearly o
identical to the 2
regular lowess
fit, indicating
that outliers
are not
problematic
Nonetheless,
most lowess
procedures use g
the robust fit
by default
(locfit is an o
exception)

Liberal Support
4

Time (in davs)
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e Since we are trying to determine an underlying structure
in the data, we don’t want unusual cases to have
extraordinary influence on the curve

* Following from the linear regression case, M-Estimation
for robust regression can be adapted to ensure that the
lowess smooth is not unduly affected by outliers

1. We start by calculating the residuals from the fitted
values for the local regressions

Ei=Y;-Y

2. Determine a measure of the scale of the residuals (e.g.,
the median absolute deviation from the median
residual): -

MAD = median|E; — E|

where E = median(E;)

Adjusting for outliers (3)

4. We then refit the local polynomial regressions using both
local weights (w,) and the resistance weights (v,)

5. From these new regressions, we calculate new fitted values

6. Steps 1-4 are repeated (iterated) until the fitted values
stabilize

7. Finally, a curve is drawn to connect the fitted values,
giving us the lowess smooth

plot(TIME, LIBERAL, xlab="Time (in days)", ylab="Liberal Support",
main="The Robust Lowess Fit", cex=2)

lines(lowess(TIME, LIBERAL, £=0.6), 1lwd=2)

lines(lowess(TIME, LIBERAL, £=0.6, iter=0),
1ty=2, col="red")

legend(locator(1), lty=c(1:2), lwd=c(2,1),
col=c("black", "red"),

legend=c(’Robust’, ’Non-robust’))

library(car) # for data sets

data(Prestige)

attach(Prestige)

plot(income, prestige, xlab="Average Income", ylab="Prestige")
lines(lowess(income, prestige, f=0.5, iter=0), lwd=2)
lines(lowess(income, prestige, f=0.8, iter=0), lwd=2,col=4)
lines(lowess(income, prestige, f=0.1, iter=0), lwd=2,col=6)

Prestige
-]
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plot(NOx~C,data=ethanol)
fit=locfit(NOx~Ip(E,nn=0.5),data=ethanol)
plot(E,NOx,data=ethanol)

lines(fit)

Interpreting the Local Regression

Estimate

« In linear regression our interest is in the regression

coefficients, in particular the slopes

- Our interest, then, is in how well the estimated

coefficients represent the true population coefficients

- We focus on confidence intervals and t-test for

individual coefficients

* In nonparametric regression we have no parameter

estimates (hence the name "nonparametric”)

- Our interest is on the fitted curve
- We calculate estimates and confidence intervals (or

envelopes) but they are with respect to the complete
curve rather than a particular estimate

- In other words, we focus on how well the estimated

curve represents the population curve

Data: NOxHE ) ¥4k ethanol

R ESE L

NOx CompRatio EquivRatio
3.741 12 0.907
2.295 12 0.761
1.498 12 1.108
2.881 12 1.016

0.76 12 1.189

312 9 1.001
0.638 9 1.231

117 9 1123
2.358 12 1.042
0.606 12 1.215

#cross-validation

alpha =seq(0.2,1,by=0.02)
n1=length(alpha)
g=matrix(nrow=n1,ncol=4)
for (kin 1:length(alpha))

{ glk,]J=gcv(NOx~Ip(E,nn=alpha[k]),data=ethanol)}

plot(g[,41~g[.3],ylab="GCV" xlab="degrees of freedom")
f1=locfit(NOx~Ip(E,nn=0.3),data=ethanol)

plot(f1)
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fit1=locfit(NOx~Ip(C,E,nn=0.3,scale=0),data=ethanol)
plot(fit1)
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