
Fundamentals of Git

PPT By Zachary Ling

CUHK

1

Outline

• History of Git

• Distributed V.S Centralized Version Control

• Getting started

• Branching and Merging

• Working with remote

• Summary

2

A Brief History of Git

• Linus uses BitKeeper to manage Linux code

• Ran into BitKeeper licensing issue

– Liked functionality

– Looked at CVS as how not to do things

• April 5, 2005 - Linus sends out email showing first
version

• June 15, 2005 - Git used for Linux version control

3

Git is Not an SCM

Never mind merging. It's not an SCM, it's a
distribution and archival mechanism. I bet you
could make a reasonable SCM on top of it,
though. Another way of looking at it is to say
that it's really a content-addressable
filesystem, used to track directory trees.

Linus Torvalds, 7 Apr 2005

http://lkml.org/lkml/2005/4/8/9

4

http://lkml.org/lkml/2005/4/8/9

Centralized Version Control

• Traditional version control system
– Server with database

– Clients have a working version

• Examples
– CVS

– Subversion

– Visual Source Safe

• Challenges
– Multi-developer conflicts

– Client/server communication

5

Distributed Version Control

• Authoritative server by
convention only

• Every working checkout
is a repository

• Get version control
even when detached

• Backups are trivial

• Other distributed
systems include

– Mercurial

– BitKeeper

– Darcs

– Bazaar

6

7

8

9

10

Git Advantages

• Resilience
– No one repository has more data than any other

• Speed
– Very fast operations compared to other VCS (I’m looking at you CVS

and Subversion)

• Space
– Compression can be done across repository not just per file

– Minimizes local size as well as push/pull data transfers

• Simplicity
– Object model is very simple

• Large userbase with robust tools

11

Some GIT Disadvantages

• Definite learning curve, especially for those used to
centralized systems
– Can sometimes seem overwhelming to learn

• Conceptual difference

• Huge amount of commends

12

Getting Started

• Git use snapshot storage

13

Getting Started

• Three trees of Git

– The HEAD

• last commit snapshot, next parent

– Index

• Proposed next commit snapshot

– Working directory

• Sandbox

14

Getting Started

• A basic workflow

– (Possible init or clone) Init a repo

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

15

Getting Started

• Init a repository • Git init

zachary@zachary-desktop:~/code/gitdemo$ git init
Initialized empty Git repository in /home/zachary/code/gitdemo/.git/

zachary@zachary-desktop:~/code/gitdemo$ ls -l .git/
total 32
drwxr-xr-x 2 zachary zachary 4096 2011-08-28 14:51 branches
-rw-r--r-- 1 zachary zachary 92 2011-08-28 14:51 config
-rw-r--r-- 1 zachary zachary 73 2011-08-28 14:51 description
-rw-r--r-- 1 zachary zachary 23 2011-08-28 14:51 HEAD
drwxr-xr-x 2 zachary zachary 4096 2011-08-28 14:51 hooks
drwxr-xr-x 2 zachary zachary 4096 2011-08-28 14:51 info
drwxr-xr-x 4 zachary zachary 4096 2011-08-28 14:51 objects
drwxr-xr-x 4 zachary zachary 4096 2011-08-28 14:51 refs

16

Getting Started

• A basic workflow

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

• Use your favorite editor

17

Getting Started

• A basic workflow

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

• Git add filename

zachary@zachary-desktop:~/code/gitdemo$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: hello.txt
#
no changes added to commit (use "git add" and/or "git commit -a")

18

Getting Started

• A basic workflow

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

• Git status

zachary@zachary-desktop:~/code/gitdemo$ git add hello.txt
zachary@zachary-desktop:~/code/gitdemo$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: hello.txt
#

19

Getting Started

• A basic workflow

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

• Git commit

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: hello.txt
#

20

Getting Started

• A basic workflow

– Edit files

– Stage the changes

– Review your changes

– Commit the changes

21

Getting Started

• View changes

• Git diff

– Show the difference
between working
directory and staged

• Git diff --cached

– Show the difference
between staged and the
HEAD

• View history

• Git log

zachary@zachary-desktop:~/code/gitdemo$ git log
commit efb3aeae66029474e28273536a8f52969d705d04
Author: Zachary Ling <zacling@gmail.com>
Date: Sun Aug 28 15:02:08 2011 +0800

Add second line

commit 453914143eae3fc5a57b9504343e2595365a7357
Author: Zachary Ling <zacling@gmail.com>
Date: Sun Aug 28 14:59:13 2011 +0800

Initial commit

22

Getting Started

• Revert changes (Get back to a previous version)

– Git checkout commit_hash
zachary@zachary-desktop:~/code/gitdemo$ git log
commit efb3aeae66029474e28273536a8f52969d705d04
Author: Zachary Ling <zacling@gmail.com>
Date: Sun Aug 28 15:02:08 2011 +0800

Add second line

commit 453914143eae3fc5a57b9504343e2595365a7357
Author: Zachary Ling <zacling@gmail.com>
Date: Sun Aug 28 14:59:13 2011 +0800

Initial commit
zachary@zachary-desktop:~/code/gitdemo$ git checkout 4539
Note: checking out '4539'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at 4539141... Initial commit
23

Branching

• Git sees commit this way…

• Branch annotates which commit we are
working on

24

Branching

25

26

27

28

29

30

31

32

33

Merging

• What do we do with this mess?

– Merge them

34

Merging

• Steps to merge two branch

– Checkout the branch you want to merge onto

– Merge the branch you want to merge

35

36

37

38

39

40

41

Branching and Merging

• Why this is cool?

– Non-linear development

clone the code that is in production
create a branch for issue #53 (iss53)
work for 10 minutes
someone asks for a hotfix for issue #102
checkout ‘production’
create a branch (iss102)
fix the issue
checkout ‘production’, merge ‘iss102’
push ‘production’
checkout ‘iss53’ and keep working

42

Working with remote

• Use git clone to replicate
repository

• Get changes with
– git fetch

– git pull (fetches and merges)

• Propagate changes with
– git push

• Protocols

– Local filesystem (file://)

– SSH (ssh://)

– HTTP (http:// https://)

– Git protocol (git://)

43

Working with remote
Local filesystem

• Pros

– Simple

– Support existing access
control

– NFS enabled

• Cons

– Public share is difficult to
set up

– Slow on top of NFS

44

Working with remote
SSH

• Pros

– Support authenticated
write access

– Easy to set up as most
system provide ssh
toolsets

– Fast
• Compression before

transfer

• Cons

– No anonymous access
• Not even for read access

45

Working with remote
GIT

• Pros

– Fastest protocal

– Allow public anonymous
access

• Cons

– Lack of authentication

– Difficult to set up

– Use port 9418
• Not standard port

• Can be blocked

46

Working with remote
HTTP/HTTPS

• Pros

– Very easy to set up

– Unlikely to be blocked
• Using standard port

• Cons

– Inefficient

47

Working with remote

• One person project

– Local repo is enough

– No need to bother with
remote

• Small team project

– SSH write access for a
few core developers

– GIT public read access

48

Working with remote

• Use git remote add to add an remote
repository

Git remote add origin git@github.com:FreezingGod/vimcfg.git
zachary@zachary-desktop:~/.vim_runtime$ git remote
origin

49

mailto:git@github.com:FreezingGod/vimcfg.git

Working with remote

• Remote branching

– Branch on remote are different from local branch

50

Working with remote

• Remote branching

– Branch on remote are
different from local
branch

– Git fetch origin to get
remote changes

– Git pull origin try to fetch
reomte changes and
merge it onto current
branch

51

Working with remote

• Git push remote_name branch_name

– Share your work done on branch_name to remote
remote_name

52

Summary

• We covered fundamentals of Git
– Three trees of git

• HEAD, INDEX and working directory

– Basic work flow
• Modify, stage and commit cycle

– Branching and merging
• Branch and merge

– Remote
• Add remote, push, pull, fetch

– Other commands
• Revert change, history view

53

Summary

• However, this is by no means a complete portray
of git, some advanced topics are skipped:

– Rebasing

– Commit amend

– Distributed workflow

• For more information, consult

– Official document

– Pro Git

• Free book available at http://progit.org/book/

54

http://progit.org/book/

Q&A

• Any questions?

55

References

• Some of the slides are adopted from
“Introduction to Git” available at
http://innovationontherun.com/presentation-
files/Introduction%20To%20GIT.ppt

• Some of the figure are adopted from Pro GIT by
Chacon, which is available at
http://progit.org/book/

• Some of the slides are adopted from “Git 101”
available at
http://assets.en.oreilly.com/1/event/45/Git%201
01%20Tutorial%20Presentation.pdf

56

http://innovationontherun.com/presentation-files/Introduction To GIT.ppt
http://progit.org/book/
http://assets.en.oreilly.com/1/event/45/Git 101 Tutorial Presentation.pdf

