帮助

一、 运行的软件和硬件要求

Windows 64 位操作系统。32 位操作系统有可能出现内存错误 Matlab 7 到 Matlab R2012a 之间版本。 内存推荐>4G

二、 演示程序运行步骤

1. 打开 matlab 主界面并将主界面中的根目录设成 toolbox 所在的目录下(即 wen.m 文件 所在的目录下)。注意,在运行 toolbox 中任何分析前,必须把 matlab 根目录设置成上 述的目录,否则程序将会报错,并且无法运行。

ŀ	OME	F	PLOTS	APPS									8 6 7 6 6 9 C 🖻 🕄 Sear	ch Doo	cumentation	⊾ ۹
New Script	New	Open FILE	Compare	Import Data	Save Workspace	New Variable	Analyze Code	Simulink Library	Layout	 Preferences Set Path Parallel 	? Help	Community Community Request Support Add-Ons Resources				
	• 🖬 🖫	1 🔒 🕨	C: ► Matla	b ► fMF	RI_Functio	nal_network_analysis 🕨										- 0
Curr	ent Fo	lder			۲	Command Window	v						C	W	orkspace	
	Name					① New to MATLAB? V	/atch this Video, see Exa	mples, or	read Ge	etting Started.			1	Na	me 🔺	Value
	Results spm2-2 templat armorf. spectru wen.fig wen.m wen_4d wen_av wen_ba wen_de wen_de wen_de wen_de wen_de wen_de	data 012-06- es m_AR.m _t_filteri .FT_surmerage_ir nd_path mo1_per mo2_see mo3_pa mo3_pa mo4_se mo5_pa	ng.m ng.m ogate.m nggate.m n_filter_desigr eprocess.m ed_correlation invise_correl invise_grang invise_grang	n.m Jation.m m jer.asv jer.m	^	(m) New to MAILABYY (f _x ≫)	aton mis <u>video</u> , see <u>isaa</u>	mpies, or	read us	iting started.				CCC	mmand Histor	→ y • ±1 p ^
	wen_for wen_ge wen_ge wen_ge wen_ge wen_ge wen_pe wen_pe	mat_im nerate_i nerate_i t_data_p bal.m anger_n rcent_ch rcent_ch	age.m formated_ma mask.m path.m natrix.m nange_2D.m nange_4D.m	ısk.m	*										wen clear clear all clear conmand clear conmand clearall clear Command	l I vi: I Vi: v
(K) (R) (R) (K) (K) (K) (K) (K) (K) (K) (K) (K) (K	wen_gk wen_gr wen_pe wen_pe	obai.m anger_n rcent_ch rcent_ch B Functio	natrix.m hange_2D.m hange_4D.m		~									۲	-clear connand -clearall -clear Connand	

2. Preprocess: 单击 toolbox 主界面中的 preprocess 按钮进行分析前的预处理: 这里包括 了去除由全局噪声、头动、白质及脑脊液等无关信号对灰质信号的影响,并且对数据 进行滤波处理。

点击以后,在出现的对话框的第一项中输入数据所在目录(这里默认为 demo 数据所 在目录),第二项填写数据采集中所设置的 TR,第三及第四项分别填写滤波的范围。 在 demo 中均选择默认即可,点击 OK 进入下一步。

🛃 去除 🗕 🗆 🗙
输入数据所在路径: rk_analysis\demo_data\rest_data
fMRITR (second) 2
低端截止频率(Hz) 0.01
高端截止频率(Hz) 0.1
OK Cancel

选取 swraf 文件并单击 Done

选择分辨灰质与其他无关脑成份(白质、脑脊液)的阈值,这里选择默认的即可,点 击 OK 进入处理。

Manput for 🗆 🗙	🛃 Input – 🗆 🗙	🛃 Input 🗕 🗆 🗙
Enter a threshold between0and0.99608 0.49804	Enter a threshold between0and1	Enter a threshold between0and1
OK Cancel	OK Cancel	OK Cancel

3. Correlation map: 点击 toolbox 主界面中的 correlation map 计算种子点与其他体素之间 的激活相关性。在具体设置中的第一项中填写被试编号,第二及第三项中分别填写数 据来源及输出目录。这里均选择默认的即可。

ଐ 计算S □ ×
输入被试编号或名称: 01
输入数据所在路径
输入保存结果路径: C:\Matlab\fMRI_Functional_netwo
OK Cancel

点击 OK, 进入数据选取页面, 选取 cswraf 文件并单击 Done

SPM (adam): SPMget -	□ ×
Select fMRI Volumes Previous Directories V C:MatabitMRI_Functional_network_analysis/demo_data/vest_data SubDirectories V SubDirectories V Drives V Filter c*.img All Edit Reset Contract/View General/20071108_02_YL_GuQian-0002-00*.img Set Set	pwd home Done
Selected 0 files, press "Done" when finished.	?

下图为输出结果的示意图之一,显示的是种子点对其他体素之间的活动相关性。

4. Pairwise correlation: 点击 toolbox 主界面中的 pairwise correlation,对不同种子点间的 相关性进行计算。在具体设置中的第一项中填写被试编号,第二及第三项中分别填写 数据来源及输出目录。这里均选择默认的即可。

🛃 计算S 🗆 🗙
输入被试编号或名称: 01
输入数据所在路径 C:\Matlab\fMRI_Functional_netwo
输入保存结果路径: C:\Matlab\fMRI_Functional_netwo
OK Cancel

点击 OK,进入数据选取页面,选取 cswraf 文件并单击 Done

下图为输出结果示意图,显示的是种子点间的激活相关性。

5. Granger causality map: 点击 toolbox 主界面中的 granger causality map 计算种子点与其他体素之间的格兰杰因果关系。在具体设置中的第一项中填写被试编号,第二及第三项中分别填写数据来源及输出目录。第四项中填写数据采集所用 TR。第五项中填写AR 模型所有参数。这里均选择默认的即可。

🛃 计算G 🗆 🗙
输入被试编号或名称: 01
输入数据所在路径:
C:\Matlab\fMRI_Functional_netwo
输入保存结果路径: C:\Matlab\fMRI_Functional_netwo
fMRITR (second)
2
输入AR模型阶数: 2
OK Cancel

点击 OK, 进入数据选取页面, 选取 cswraf 文件并单击 Done

如图为种子点所在切片结果示意图

6. Pairwise granger causality: 点击 toolbox 主界面中的 pairwise granger causality 计算种 子点间的格兰杰因果关系。在具体设置中的第一项中填写被试编号,第二及第三项中 分别填写数据来源及输出目录。第四项中填写数据采集所用 TR。第五项中填写 AR 模 型所有参数。第六项填写 surrogate 数据个数目。这里均选择默认的即可。

🛃 计算G 🗆 🛛 🛛
输入被试编号或名称: 01
输入数据所在路径:
C:\Matlab\fMRI_Functional_netwo
输入保存结果路径:
C:\Matlab\fMRI_Functional_netwo
fMRITR (second)
-
- 输入AR模型阶数: 2
输入AR模型阶数: 2 Surrogate 数据数目: 0

点击 OK, 进入数据选取页面, 选取 cswraf 文件并单击 Done

如图为结果示意图,代表每个种子点到其他种子点的格兰杰因果关系强度

